Beispielaufgabe

Definitionen

Eine Gruppe ist ein Paar (G, *) bestehend aus einer Menge G und einer inneren zweistelligen Verknüpfung * auf G. Das heißt, durch * wird die Abbildung * : G \times G \to G, (a,b) \mapsto a * b beschrieben. Erfüllt die Verknüpfung die folgenden Axiome, dann wird (G,*) Gruppe genannt:

    \begin{align*}   \text{Assoziativit\"at:}\quad  &\forall a, b, c \in G: (a* b) * c = a * (b * c) \\   \text{Neutrales Element:}\quad  &\exists e\in G: \forall a\in G: a * e = e * a = a \\   \text{Inverses Element:}\quad  &\forall a \in G \exists a^{-1} \in G: a * a^{-1} = a^{-1} * a = e \end{align*}

Gilt zusätzlich

    \begin{align*}   \text{Kommutativit\"at:}\quad  &\forall a, b \in G: a*b = b*a \, , \end{align*}

so heißt die Gruppe kommutativ oder abelsch.

Oftmals schreiben wir kurz ab für das Element a* b und G := (G,*) für die Gruppe.

Unter der Ordnung eines Gruppenelementes oder Elementordnung eines Elements g \in G versteht man die kleinste natürliche Zahl n > 0, für die g^{n}=e gilt.

Übungsaufgabe

Zeige, dass eine Gruppe, in der jedes Element (außer e) die Ordnung 2 hat, abelsch ist.

8
Hinterlasse einen Kommentar

avatar
8 Kommentar Themen
0 Themen Antworten
0 Follower
 
Kommentar, auf das am meisten reagiert wurde
Beliebtestes Kommentar Thema
4 Kommentatoren
Stefan HartmannStefan HartmannTestuserHarald Grohganz Letzte Kommentartoren
  Abonnieren  
Benachrichtige mich zu:
Testuser
Mitglied
Testuser

Das hier ist ein weiterer Test-Text. Jetzt möchte ich gerne LaTeX verwenden und hätte gerne eine Vorschau…
Wenigstens kann ich das Ding nun editieren. Der Admin auch 🙂

Stefan Hartmann
Webmaster

Test:
A cup B

Stefan Hartmann
Webmaster

A setminus B

Stefan Hartmann
Webmaster

Test $x in X§

Stefan Hartmann
Webmaster

Test x in X

Stefan Hartmann
Gast
Stefan Hartmann

Test x in X

Stefan Hartmann
Gast
Stefan Hartmann

x \in X